Arbres cannelés de précision

Arbres cannelés de précision Structures et avantages / Conception / Dimensions 2 3 Flexion, tortion et rigidité de l'arbre Déformation radiale et axiale Vitesse critique Douilles à billes anti-rotation Durée de vie 6 Précharge Précision Tolérance de l'alesage 9 Type SLT 10 Type SLF 11

sommaire

ARBRES CANNELES

Les arbres cannelés peuvent être employés dans une grande variété d'applications (robotique,transport...).

STRUCTURE ET AVANTAGES

Les arbres cannelés peuvent être employés dans une grande variété d'applications. Les systèmes à couple résistant sont constitués d'un arbre rectifié et d'une douille à recirculation de billes à profilé gothique.

Dans sa conception, le principe utilise la force de friction qui résulte du contact entre les billes d'acier à l'intérieur de la douille à billes et les pistes de roulement. Grâce à un contact angulaire de 40°, ce système offre un mouvement souple et une capacité de chargement importante. Il est d'une conception optimale pour toutes les applications nécessitant une vitesse élevée, un positionnement de précision lorsque la charge peut avoir un impact et entrainer des vibrations.

De plus lorsque ce système est utilisé pour fonctionner comme une douille à billes, il procure une capacité de chargement 10 fois supérieure à celle d'un système conventionnel.

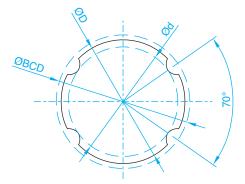
En résumé, la fiabilité et la longévité sont les facteurs motivant le choix d'un arbre cannelé.

CONCEPTION:

Du Ø6 au 20 l'arbre cannelé dispose de 2 pistes de roulement à 180°, > au Ø 20 l'arbre cannelé dispose de 4 pistes de roulement à 70°.

Chaque cannelure de l'arbre est usinée très méticuleusement pour former un angle parfait à 40° au point de contact. Ce concept de point de contact à 40° appelé arc gothique, permet d'accroître la capacité de charge et la rigidité de façon à traiter une charge des moments plus importants. Un angle de contact large et un niveau de pré charge approprié sont combinés pour fournir une haute rigidité pour les applications très sollicités. Les arbres cannelés peuvent être livrés

- 1 Arbres acier rectifié (standard)
- 2 Arbres acier creux rectifié (option)
- 3 Arbres inox jusqu'au Ø25 (option)


Pour les aciers inoxydable, la valeur de la charge admissible ne doit pas excéder 0,8 de la charge nominale de la douille à billes définie dans le catalogue,

4 • Arbres avec traitement anticorrosion (option).

DIMENSIONS

Du Ø 6 au 20 2 Cannelures à 180°

Du Ø 25 au 50 4 Cannelures à 70°

Arbre Creux

Tableau N°1 - Dimensions

	αD	Tol (84 BCD (84		Q.1	Ma	sse	se Longueur		
Référence	ØD	Tol	Ød	BCD	Ød	Standard	Creux	Plein	Creux
	mm	μm	mm	mm	mm	g/m	g/m	mm	mm
SL6S/H	6	0/-15	5,25	6,75	2	220	177	2 000	500
SL8S/H	8	0/-15	7,27	8,77	3	390	330	2 000	500
SL10S/H	10	0/-18	8,97	11,35	4	600	506	2 000	1 200
SL13S/H	13	0/-18	11,82	14,6	7	1 030	872	2 000	1 200
SL16S/H	16	0/-18	14,7	17,5	8	1 560	1 250	2 000	1 200
SL20S/H	20	0/-21	18,63	21,8	10	2 440	1 820	2 000	1 200
SL25S/H	25	0/-21	23,63	27	15	3 800	2 920	4 000	1 200
SL30S/H	30	0/-25	28,53	32,1	16	5 490	3 930	4 000	1 200
SL40S/H	40	0/-25	37,3	43,65	20	9 690	6 750	4 000	1 200
SL50S/H	50	0/-30	47,05	54,2	26	15 190	11 400	4 000	1 200

SL-S Arbre standard - SL-H Arbre creux

Livraison

Les arbres sont livrés emballés (caisse bois ou systèmes U). Il est conseillé de les enlever de l'emballage dès la réception de la marchandise afin d'éviter les risques d'oxydation.

FLEXION DE L'ARBRE

L'arbre cannelé est conçu pour absorber la charge radiale et la force du couple lors de l'utilisation. C'est pour cette raison qu'il convient de prendre en considération l'effort de la résistance lorsque m'on opère en charge extrême ou couple extrême.

MOMENT DE FLEXION

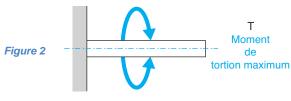
La charge appliquée sur un arbre cannelé provoque une déformation de la pièce pendant le fonctionnement d'une application. Le moment de flexion maximale est lié à des facteurs multiples tels que le type fixation, la longueur de l'arbre cannelé et la capacité de charge Si une charge provoque un moment de flexion sur l'arbre cannelé, la formule de calcul suivante permet de définir le diamètre de l'arbre cannelé.

Formule 1
$$M = \sigma \cdot Z$$
 et $Z = \frac{M}{\sigma}$

M: Moment de flexion maximum (Nmm)

 σ : Contrainte de torsion admissible, 98N/mm²

Z: Flexion de l'arbre (mm³) (Voir tableau 2)


MOMENT DE TORSION

Lorsque qu'un moment de torsion agit sur l'arbre cannelé, il faut utiliser l'équation (formule) pour déterminer le \varnothing optimum.

Formule 2
$$T = \tau_a \cdot ZP$$
 and $ZP = \frac{T}{\tau_a}$

M: Moment de torsion maximum

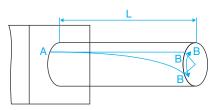
 τ a : Contrainte normale admissible, 49N/mm² Zp : Module de torsion de l'arbre (Voir *tableau 3*)

(Voir tableau 4)

SIMULTANEMENT TORSION ET FLEXION

Moment de flexion et moment de torsion appliqués simultanément sur l'arbre Pour calculer le moment de flexion de mouvement (M) et moment de torsion (T) appliqués simultanément sur l'arbre utiliser les *formules 3 et 4* afin d'obtenir un moment de flexion équivalent (Me) et un moment de torsion équivalent (Te). Choisissez la plus grande valeur obtenue lors des *formules 3 et 4* pour définir le diamètre de l'arbre.

Moment de flexion équivalent :


Formule 3 Me =
$$\frac{M + \sqrt{M^2 + T^2}}{2} = \frac{M}{2} \left\{ 1 + \sqrt{1 + \left(\frac{T}{M}\right)^2} \right\}$$
Me = $\sigma \cdot Z$

Moment de torsion et flexion équivalent :

Formule 4 Te =
$$\sqrt{M^2 + T^2}$$
 = M · $\sqrt{1 + (\frac{T}{M})^2}$
Te = $\tau a \cdot ZP$

RIGIDITÉ DE L'ARBRE

La rigidité de l'arbre cannelé est exprimée en angle de torsion pratiqué par l'angle du moment de torsion. L'angle de torsion doit être limité à moins de 0.25 ° par 1000 mm.

Formule 5
$$\theta = 57.3 \cdot \frac{\mathsf{T} \cdot \mathsf{L}}{\mathsf{G} \cdot \mathsf{Ip}}$$

Rigidité en torsion de l'arbre cannelé = Angle de torsion / unité de longueur (Voir tableau 4)

$$=\frac{\theta}{\ell}<\frac{1^{\circ}}{4}$$

T: Angle de torsion (°)

L: Longueur de l'arbre (mm)

G: Elasticité transversale (7,9x10⁴N/mm²)

 ℓ : Unité de longueur(1 000 mm)

Ip: Moment quadratique polaire de la section mm⁴ (Voir *tableau 3*)

ARBRES CANNELES

Tableau N°2 -DÉFORMATION RADIALE

Pour le calcul de la flexion et de l'angle d'inclinaison, il faut un choix approprié en fonction de l'application de la charge. Le *tableau N°2 et N°3* illustre les conditions typiques et les formules à utiliser.

Type de support	Cas d'application de la charge	Formule de flexion	Formule de la déformation angulaire
Libre aux extrémités avec charge centrée	XX P VI2	$\delta_{\text{max}} = \frac{P\ell^3}{48EI}$	$i_1 = 0$ $i_2 = \frac{P\ell^2}{16EI}$
Bloqué aux extrémités avec charge centrée	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	$\delta_{max} = \frac{P\ell^3}{192EI}$	$i_1 = 0$ $i_2 = 0$
Libre aux extrémités avec charge uniforme	Charge uniforme p	$\delta_{max} = \frac{5P\ell^4}{384EI}$	$i_2 = \frac{p\ell^3}{24EI}$
Bloqué aux extrémités avec charge uniforme	Charge uniforme p	$\delta_{\text{max}} = \frac{p\ell^4}{384\text{EI}}$	i ₂ = 0

Tableau N°3 - DÉFORMATION RADIALE ET ANGULAIRE DE L'ARBRE

Pour le calcul de la flexion et de l'angle d'inclinaison, il faut un choix approprié en fonction de l'application de la charge. Le *tableau N°2 et N°3* illustre les conditions typiques et les formules à utiliser.

Type de support	Cas d'application de la charge	Formule de flexion	Formule de la déformation angulaire
Bloqué à une extrémité avec point de charge en bout d'arbre	P Q Wax	$\delta_{\text{max}} = \frac{P\ell^3}{3\mathrm{EI}}$	$i_1 = \frac{P\ell^2}{2EI}$ $i_2 = 0$
Bloqué à une extrémité avec charge uniforme	Charge uniforme p	$\delta_{\text{max}} = \frac{P\ell^4}{8EI}$	$i_1 = \frac{P\ell^3}{6EI}$ $i_2 = 0$
Supporté aux extrémités	Couple Mo	$\delta \max = \frac{\sqrt{3} \operatorname{Mo} \ell^2}{216 \operatorname{EI}}$	$i_1 = \frac{M_0 \ell}{12EI}$ $i_2 = \frac{M_0 \ell}{24EI}$
Fixé aux extrémités	Couple Mo	$\delta_{\text{max}} = \frac{M_0 \ell^2}{216EI}$	$i_1 = \frac{M_0 \ell}{16EI}$ $i_2 = 0$

Légende δ max = Déformation maximum (mm)

i₁ = Déformation angulaire au pont d'application de la charge

i₂ = Déformation angulaire aux extrémités

 \dot{M}_{o} = Moment (N-mm)

P = Charge concentrée (N)

p = Charge répartie uniformément (N/mm)

 ℓ = Longueur (mm)

I = Moment quadratique (mm⁴)

E = Module de l'élasticité directe 2,06x10⁵ (N/mm²)

ARBRES CANNELES

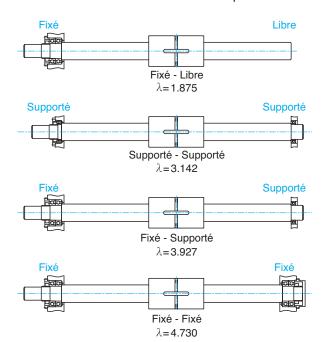
VITESSE CRITIQUE

En cas de rotation de l'arbre, il est nécessaire de connaître la vitesse limite de l'arbre cannelé, Quand le système atteint une vitesse critique il se produit une résonance (vibration) mécanique et aucune autre opération ne peut être effectuée. A savoir que pour maintenir des conditions opérationnelles optimales il convient de surveiller la vitesse. C'est pour cela qu'il est préconisé d'utiliser l'équation pour définir une vitesse sécuritaire fixée à 80% de la vitesse critique.

Formule 6 N_c =
$$\frac{60 \lambda^2}{2 \pi \cdot \ell_b^2} \cdot \sqrt{\frac{\text{E} \cdot 10^3 \text{I}}{\gamma \cdot \text{A}}} \cdot 0.8$$

Nc: Vitesse critique (min⁻¹)

ℓ_b: Distance entre les deux supports (mm)
 E: Module d'élasticité 2,06x10⁵ (N/mm²)


I : Coefficient en fonction du type de montage (mm⁴)

λ : Densité

$$I = \frac{\pi}{64} d_1^4 \qquad d_1 : Diamètre (mm)$$

 γ : Densité (7.85 · 10⁻⁶ kg/mm³)

$$A = \frac{\pi}{4} d_1^2$$
 d_1 : Diamètre (mm)
A: Diamètre (mm)

Tableau N°4 - CARACTÉRISTIQUE GÉOMÉTRIQUE

Ø	Arbres	Moment Quadratique	Moment Quadratique Polaire	Moment Flexion	Moment Torsion
		T	lp	Z	Zp
		mm ⁴	mm⁴	mm³	mm³
6	plein	63,49	119,23	18,58	39,74
0	creux	62,70	117,33	18,32	39,22
8	plein	200,93	387,00	46,65	96,88
0	creux	196,96	379,57	45,65	94,89
10	plein	490,25	933,28	86,61	186,66
10	creux	477,68	908,16	86,10	181,63
13	plein	1 400,81	2 691,54	198,57	414,08
13	creux	1 282,96	2 455,82	180,44	377,82
16	plein	3 215,60	6 242,70	378,39	780,34
10	creux	3 014,53	5 840,57	353,28	730,07
20	plein	7 851,80	15 336,59	748,48	1 533,66
20	creux	7 360,93	14 354,84	699,39	1 435,48
25	plein	18 466,30	36 932,60	1 477,30	2 954,91
25	creux	15 981,25	31 962,50	1 278,50	2 557,00
30	plein	33 122,31	77 392,48	2 579,75	4 416,31
30	creux	29 905,32	70 958,50	2 365,28	3 987,38
40	plein	120 667,43	241 334,90	6 033,37	12 066,74
40	creux	112 813,45	225 626,90	5 640,67	11 281,35
50	plein	297 123,73	594 247,50	11 884,95	23 769,90
50	creux	274 691,98	549 384,00	10 987,68	21 975,36

DURÉE DE VIE

La durée de vie nominale d'un arbre cannelé dépend de plusieurs facteurs qui peuvent avoir une incidence sur la longévité du système. Le couple, la charge radiale, le moment et le type de pré-charge. L'impact de chacun de ces 4 aspects peut être calculer grâce aux formules 7, 8, 9 et 10. Veuillez noter par conséquent que la durée de vie nominale n'a qu'une valeur de référence selon le type d'application.

1 - Quand un couple est appliqué

Formule 7
$$L = \left(\frac{f_T \cdot f_C}{f_W} \cdot \frac{C_T}{T_C}\right)^3 \cdot 50$$

2 - Quand une charge radiale est appliquée

Formule 8

$$L = \left(\frac{f_T \cdot f_C}{f_W} \cdot \frac{C}{P_C}\right)^3 \cdot 50$$

L : Durée de vie nominale (Km)

CT: Couple de base dynamique (N-m)

Tc: Charge radiale calculée (N)

C: Charge dynamique de base (N)

Pc: Charge radiale (N)

f_⊤ : Facteur de température

f_C: Facteur de température

f : Facteur de température

3 - Quand simultanément couple et charge radiale sont appliquées

Formule 9

$$PE = Pc + \frac{4 \cdot Tc \cdot 10^{3}}{i \cdot BCD \cdot \cos \alpha}$$

 \boldsymbol{P}_{E} : Charge radiale équivalente (N)

 $cos\alpha$: Angle de contact

i : Nombre de rangées de billes supportant

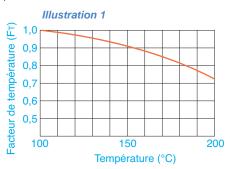
le couple

BCD: Ø au centre des billes (Voir tableau 1)

4 - Estimation de la durée de vie

Une fois que l'on obtient la vie nominale (L) si la longueur de la course et le nombre de cycles sont réciproques et conformes, alors on peut établir une durée nominale en nombre d'heures grâce à l'équation suivante :

$$Lh = \frac{L \cdot 10^3}{2 \cdot \ell s \cdot N_1 \cdot 60}$$


Lh : Durée de vie en heures de fonctionnement (h)

 ℓ s : Longueur de la course (m)

*n*₁: Nombre de cycle par minute (min⁻¹)

Facteur de température

Lorsque l'arbre cannelé est utilisé dans un environnement ou la température atteint est >80° ou plus, étant donné que la chaleur peut affecter le bon fonctionnement du système, nous recommandons de prendre en compte le schéma. Température de fonctionnement normale -20°+80°, si supérieur, il faut consulter notre bureau d'étude.

Coefficient de frottement (F_C)

Lorsque plusieurs douilles à billes sont montées de façon rapprochées sur l'arbre, le mouvement linéaire est affecté, résultant d'une partie non uniforme de la charge. Lorsque que les douilles sont positionnées proche l'une de l'autre, multipliez le coefficient de charge de base par l'un des facteurs de contacts spécifié dans le tableau ci-dessous :

Tableau N°5

Nombre de douilles	F _C
1	1
2	0,81
3	0,72
4	0,66
5	0,61

Facteur (fw)

L'utilisation de machine réciproque entraîne forcément des vibration et impact, Il est difficile d'évaluer le degré de vibration ou d'impact lors d'un déplacement rapide, ou lors d'un démarrage ou d'un arrêt brusque, c'est pour cela que lorsque les charges appliquées ou la vitesse sont extrêmes, nous conseillons d'utiliser le taux de charge C ou Co et de le multiplier selon les valeurs du tableau ci-dessous :

Tableau N°6

Vibration	Vitesse (V)	f _w
Mineur	V<0,25m/s	1-1,2
Légère	0,25 <v≤1 m="" s<="" td=""><td>1,2-1,5</td></v≤1>	1,2-1,5
Moyenne	1,0 <v≤2 m="" s<="" td=""><td>1,5-2,0</td></v≤2>	1,5-2,0
Elevée	V>2 m/s	2.0-3.5

PRÉCHARGE

La valeur de la Pré-charger d'un arbre cannelé modifie sa précision, sa rigidité et sa durée de vie. Le jeux interne doit être doit de l'arbre doit être déterminé en fonction de l'application. La pré-charge est la charge appliquée sur les billes avant utilisation dans le but d'éliminer le jeu angulaire et amélioré la rigidité du système. En comparaison avec une installation sans pré-charge, le déplacement avec le même couple de rotation est deux fois moins important avec une précharge et la rigidité deux fois plus grande.

Condition d'utilisation

Précharge	Туре	Conditions d'utilisation
Standard	P0	Très légère vibration/ Mouvement souple / Couple agissant dans une seule direction
Légère	P1	Faible vibration / Mouvements alternatif / Sens de charge variable
Moyenne	P2	Forte vibrations / Mouvements alternatifs fréquents / Rigidité importante

Jeu interne de la douille en rotation

Jeu radial μm								
Précharge P0 P1 P2								
6/8/12/12/13	-2/+1	-6/-2	-					
16/20	-2/+1	-6/-2	-9/-5					
25/30	-3/+2	-10/-4	-14/-8					
40/50	-4/+2	-16/-8	-22/-14					

LUBRIFICATION

Pour les applications courantes nous préconisons une lubrification tous les trois mois maximum. Si l'application est très importante, il faut réduire se délai.

PRÉCISION

La précision des arbres cannelés est classée en trois catégories : N = Normale / H = Elevée / P = Haute précision

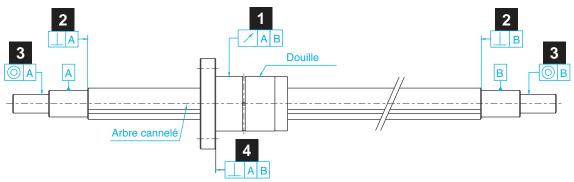


Tableau 1 Battement radial du diamètre extérieur de la douille par rapport aux parties supports

Q	<u> </u>		6/8			10			13/16/20			25/30			40/50	
Préc	ision	N	Н	Р	N	Н	Р	N	Н	Р	N	Н	Р	N	Н	Р
Longueur mm																
De	à								Jnité µn	1						
-	200	72	46	26	58	36	20	56	34	18	53	32	18	53	32	16
200	315	133	89	57	83	54	32	71	45	25	58	39	21	58	36	19
315	400	185	126	82	103	68	41	83	53	31	70	44	25	63	39	21
400	500	236	163	108	123	82	51	95	62	38	78	50	29	68	43	24
500	630	-	-	-	151	102	65	112		-	88	57	34	74	47	27
630	800	-	-	-	190	130	85	-	-	-	103	68	42	84	54	32

Tableau 2 Perpendicularité de la partie verticale par rapport à la partie supports

Ø	N	Н	Р
Précision			
6/08/10	22	9	6
12/13/16/20	37	11	8
25-30	33	13	9
40/50	39	16	11

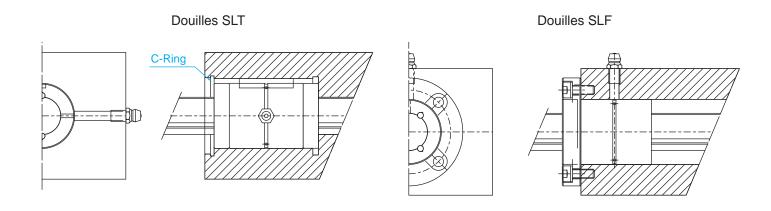
Tableau 3 Concentricité du diamètre de la partie liaison par rapport aux diamètre support

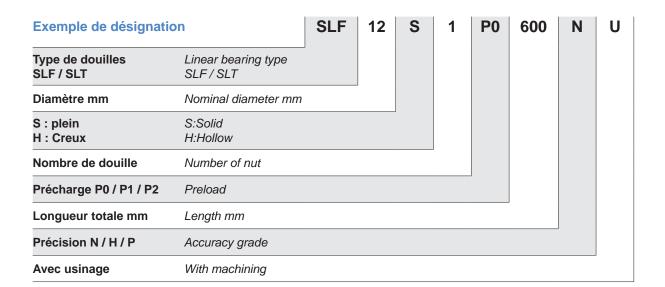
Ø	N	Н	P
Précision		Unité µm	
6/8	33	14	8
10	41	17	10
12/13/16/20	56	19	12
25-30	53	22	13
40/50	62	25	1

Tableau 4 Perpendicularité de la collerette de la douille par rapport au support

Ø	N	Н	Р			
Précision	Unité µm					
6/8	17	11	8			
10/12/13	33	13	9			
16/20/25/30	30	16	11			
40/50	46	19	13			

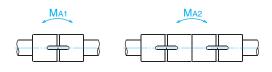
Tableau 5 Tolérance de torsion du chemin de roulement maximum

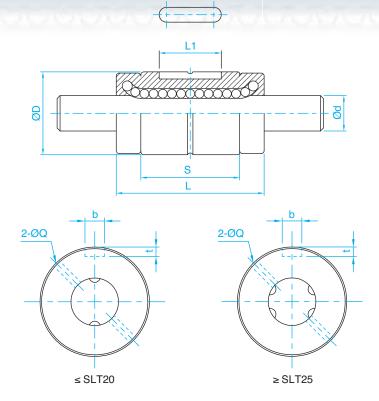

Précision	N	Н	P							
Unité µm										
Pour 100 mm	33	13	6							


La tolérance de la torsion du chemin de roulement est donnée par 100 mm. Cette valeur sera proportionnelle à la longueur du déplacement.

TOLERANCE DE L'ALESAGE

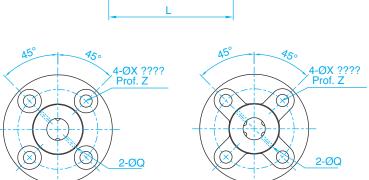
L'alésage des paliers pour douilles à billes sont usinés soit en H7 pour un jeu standard, soit en J6 pour un jeu réduit. La tolérance H7 est recommandée pour le diamètre interne du logement accueillant la douille à billes.





Type SLT

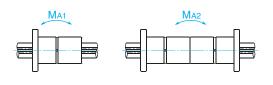
6/20 : 2 rangées de billes / 2 row of ball circuit 25/50 : 4 rangées de billes / 4 row of ball circuit



P			Dime	nsions	- mm			Basic	rges c load N	Tor	ples que .m	Moments Moment N.m		Poids Weight	
Référence <i>Type</i>	D	L	L1	Q	b H8	t	d h7	Dyn. C	Stat. Co	Dyn. Ct	Stat. Cot	M _{A1}	M _{A2}	Douille Ball bushing	Arbre Shaft
														g	kg/M
SLT6	14	25	10,5	1	2,5	1,2	6	1,34	2,21	4,51	7,47	3,82	34,12	14	0,22
SLT8	16	27	10,5	1,5	2,5	1,2	8	1,34	2,21	5,88	9,70	3,82	37,46	16	0,39
SLT10	21	33	13	1,5	3,0	1,5	10	2,79	3,89	15,88	22,06	9,31	83,65	37	0,60
SLT13	24	36	15	2	3,0	1,5	13	3,88	5,30	28,30	38,63	14,71	122,19	52	1,03
SLT16	31	50	17,5	2	3,5	2	16	5,34	8,33	46,77	72,86	36,38	255,85	130	1,56
SLT20	35	56	29	2	4,0	3	20	7,10	10,88	77,47	118,56	54,23	372,65	188	2,44
SLT25	42	71	36	3	4,0	3	25	9,84	15,62	215,64	421,78	101,49	672,63	285	3,80
SLT30	47	80	42	3	4,0	3	30	11,38	19,22	296,74	617,13	153,76	914,66	395	5,49
SLT40	64	100	52	4	6,0	4	40	29,15	39,55	1 033,00	1 726,46	358,82	2 592,29	843	9,69
SLT50	80	125	58	4	8,0	4	50	40,07	55,06	1 764,00	2 985,00	505,80	4 204,30	1 758	15,19

Dimensions et longueur des arbres page 2

B F



≥ SLF25

Type SLF

6/20 : 2 rangées de billes / 2 row of ball circuit 25/50 : 4 rangées de billes / 4 row of ball circuit

		Dimensions - mm								Charges Basic load kN		Couples Torque N.m		Moments Moment N.m		Poids Weight	
Référence Type	D	L	Α	В	F	Q	W	XxYxZ	d h7	Dyn. C	Stat. Co	Dyn. Ct	Stat. Cot	M _{A1}	M _{A2}	Douille Ball bushing	Shaft
																g	kg/M
SLF6	14	25	30	6	7,5	1	22	3,4 x 6,5 x 4,5	6	1,34	2,21	4,31	7,47	3,82	34,12	36,7	0,22
SLF8	16	27	32	8	7,5	1,5	24	3,4 x 6,5 x 4,5	8	1,34	2,21	5,88	9,70	3,82	37,46	47	0,39
SLF10	21	33	42	9	10,5	1,5	32	4,5 x 8 x 4	10	2,79	3,89	15,88	22,06	9,31	83,64	100	0,60
SLF13	24	36	44	9	11,0	1,5	33	4,5 x 8 x 4,5	13	3,55	5,29	28,34	38,63	14,70	122,19	117	1,03
SL016	31	50	51	10	18,0	2	40	4,5 x 8 x 6	16	5,34	8,33	46,77	72,86	36,38	255,85	226	1,56
SLF20	35	56	58	10	18,0	2	45	5,5 x 9,5 x 5,4	20	7,10	10,87	77,47	118,56	54,23	372,65	303	2,44
SLF25	42	71	65	13	26,5	3	52	5,5 x 9,5 x 8	25	10,82	15,62	215,64	421,78	101,49	672,63	458	3,80
SLF30	47	80	75	13	30,0	3	60	6,6 x 11 x 8	30	11,37	19,48	296,74	617,13	153,76	914,66	633	5,49
SLF40	64	100	100	18	36,0	4	82	9 x 14 x 12	40	29,14	39,55	1 033,72	1 726,46	358,82	2 415,77	1 430	9,69
SL050	80	125	124	20	46,5	4	102	11 x 17,5 x 12	50	40,07	55,06	1 764,11	2 984,64	505,82	4 204,30	2 756	15,19

Dimensions et longueur des arbres page 2

≤ SLF20